If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+12t-80=0
a = 4.9; b = 12; c = -80;
Δ = b2-4ac
Δ = 122-4·4.9·(-80)
Δ = 1712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1712}=\sqrt{16*107}=\sqrt{16}*\sqrt{107}=4\sqrt{107}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{107}}{2*4.9}=\frac{-12-4\sqrt{107}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{107}}{2*4.9}=\frac{-12+4\sqrt{107}}{9.8} $
| x^2-4x=5-9 | | 4x+2x+3x=360 | | y+2y+150=360 | | y+2y+150=180 | | 4g-5=8g-1 | | 3(x-5)+2(x+3)=3x+5 | | (2x-8)(x-4)=3 | | 19-x=-10 | | -15+x=-33 | | 5h+35=185 | | 70=1/2(9.81)t^2 | | 70/1.4x+15=70/x | | 3/8=-6/x | | 6(3x-4)+10=6(x-2)-(3x+4) | | 9-4(2+m)=21 | | x4-1=4 | | 2(7x+4)=4x-6(2-x+7 | | -2x2-x+28=0 | | 27-2x=90 | | -4x2+10x+24=0 | | -x2+3x+40=0 | | 18=-2x2+15x | | 2x2=-19x-9 | | 2x2-6x=-4 | | 8y+19=15 | | -8x+36=4x2 | | -6x+54=4x2 | | 63=10u-3u | | 3.6=12n3 | | -6=-2+u^2 | | 3(7x-7)=21 | | 3(x+2)+14=144 |